´ëÇѾð¾îÇÐȸ ÀüÀÚÀú³Î

´ëÇѾð¾îÇÐȸ

31±Ç 1È£ (2023³â 3¿ù)

Àΰ£¹ø¿ª°ú ±â°è¹ø¿ªÀÇ ¿©¼º¾î․³²¼º¾î ºñ±³ ¿¬±¸: ÇÑÀÏ ¹ø¿ªº» 82³â»ý ±èÁö¿µÀÇ ¹®¸»(ÙþØÇ)Ç¥ÇöÀ» Áß½ÉÀ¸·Î

Á¶½Â¿¬

Pages : 45-63

DOI :

PDFº¸±â

¸®½ºÆ®

Abstract

Cho, Seungyeon. (2023). Comparative study of feminine and masculine languages of human translation and machine translation: Focused on the sentence-end expressions in the Japanese translations of the Korean novel Kim Jiyoung, Born 1982. The Linguistic Association of Korea Journal, 31(1), 45-63. This study is a case study of machine translation in literature, which is performed by applying two types of machine translations (Google and Papago) to the novel Kim Jiyoung, Born 1982. The purpose of this study is to examine the applicability of machine translation in literature. To this end, we have looked at the usage patterns of the sentence-end expressions in female and male characters of the human-translated Japanese novel and how those sentence-end expressions appeared in machine translations. This study is not for evaluating mistranslations and performance in machine translation in literature. As a research method, we constructed the texts of the Korean novel and the Japanese translation as a corpus, and performed a cross-analysis (chi-square test) with the analysis data. Also, we contrasted human and machine translations by analyzing the sentence-end expressions of the characters according to êóô» (2016)'s seven classification methods of sentence-end expressions. The study results show that both types of machine translations translated the female characters' sentence-end expressions to a level close to human translation.

Keywords

# ¹®Çбâ°è¹ø¿ª(Literature translation) # ¿©¼º¾î(female language) # ³²¼º¾î(male language) # ÄÚÆÛ½º ºÐ¼®(corpus analysis)

References

  • °ûÀº½É. (2014). ùÛ国á³説ªÎìíÜâåÞ翻訳ªË̸ªéªìªëÒ³àõÔôíÞìÑÚªªÎåëç¨Ìºª¤ªË関ª¹ªëìéÍÅóÌ-Ò³ àõ«¸«§«ó«À-øöãÆû¡ãÒªÎÞÅéĪòñéãýªË-. ÀϺ»¹®ÇÐÇк¸, 64, 5-28.
  • °ûÀº½É. (2015). ùÛìíÛßæ»â£åöªËªªª±ªëÙþØÇøúúÞªÎò¦ÓôªËμª¹ªëæÚϼ -àõó¬ªòøúª¹ÙþØÇÞòªÎÞÅéÄ ªòñéãýªË-. ÀϺ»¾î±³À°¿¬±¸, 7-28.
  • ±è½½±â. (2018). ÀΰøÁö´ÉÀ¸·Î ³¯°³ ´Ü ÀÚµ¿Åë¹ø¿ª ¼­ºñ½º. Digieco. KT°æÁ¦°æ¿µ¿¬±¸¼Ò. Retrieved from http://digieco.co.kr/ktfront
  • ¸¶½ÂÇý. (2017). ±â°èÈ­µÇ±â ¾î·Á¿î Àΰ£ ´É·Â°ú ¹®Çйø¿ª ´É·Â ºñ±³ °íÂû ¹× ³íÀÇ. Åë¹ø¿ªÇבּ¸, 21(3), 55-77.
  • ¸¶½ÂÇý. (2018). ¹®ÇÐÀÛÇ° ±â°è¹ø¿ªÀÇ ÇÑ°è¿¡ ´ëÇÑ »ó¼¼ °íÂû. Åë¹ø¿ªÇבּ¸, 22(3), 65-88.
  • ¾È¹Ì¿µ. (2020). Çѱ¹¾î¿Í ¿µ¾îÀÇ ¾ð¾îÀû Â÷ÀÌ¿¡ µû¸¥ ±â°è¹ø¿ªÀÇ ¹®Á¦Á¡°ú ±×¿¡ ´ëÇÑ Æ÷½ºÆ® ¿¡µðÆà ¹æÇâ Á¦¾È. ¿µ¾î¿µ¹®ÇÐ, 25(1), 103-130.
  • ÀÌ»óºó. (2016). Æ®·£½ºÅ©¸®¿¡À̼Ç, ±â°è¹ø¿ª, ¹ø¿ª±³À°ÀÇ ¹Ì·¡. Å뿪°ú ¹ø¿ª, 18(2), 129-152.
  • ÀÌ¿ëÈÆ. (2016). RÀ» È°¿ëÇÑ ÄÚÆÛ½º¾ð¾îÇаú Åë°èÇÐ. Çѱ¹¹®È­»ç.
  • ÀÌÀ¯¾Æ. (2020). ¼Ò¼³ 82³â»ý ±èÁö¿µÀÇ ¹ø¿ª¿¡¼­ ³ªÅ¸³­ Á¨´õ Ç¥Çö ¾ç»ó¿¡ ´ëÇÑ °íÂû. ÀϺ»¾î¹®ÇÐ, 88(1), 149-178.
  • ÀÌÁØÈ£. (2019). ¹®Çйø¿ª Àû¿ëÀ» À§ÇÑ ±â°è¹ø¿ªÀÇ ÇöÁÖ¼Ò. Åë¹ø¿ªÇבּ¸, 23(1): 143-167.
  • ÀÌâ¼ö. (2021). ±â°èÇнÀ ¾Ë°í¸®ÁòÀ» È°¿ëÇÑ ¹®Çйø¿ª¿¡¼­ÀÇ ±â°è ¹ø¿ª°ú Àΰ£ ¹ø¿ª °á°ú¹° ºÐ·ù ¿¬±¸. ¹ø¿ªÇבּ¸, 22(1), 199-217.
  • ÀÌÇعÌ. (2022). ±¹³» ¾ð¾îÇаè¿Í ÀϺ»¾îÇаèÀÇ ±â°è¹ø¿ª °ü·Ã ¿¬±¸ µ¿Ç⠺м®. ÀϺ»¾îÇבּ¸, 71, 125-143.
  • Ź¼º¼÷. (2002). ¹®¸»Ç¥Çö¿¡ °üÇÑ ¿¬±¸. º¸°í»ç, 13-21.
  • ÃÖÀ±¿µ. (1996). ±â°è¹ø¿ª°ú ¹®Çйø¿ª. ¹ø¿ª¿¬±¸, 4, 51-61.
  • Ȳ¼ö¿µ. (2015). Çѱ¹ÀÎ ÀϺ»¾î ÇнÀÀÚ¿¡ À־ÀÇ ¹®¸»Ç¥Çö¿¡ °üÇÑ ¾ç»ó ¿¬±¸ : Á¾Á¶»ç¿Í
  • ÁßµµÁ¾·áÇ¥Çö, Ãß·®Ç¥ÇöÀ» Áß½ÉÀ¸·Î. ÀϺ»¾î±³À°, 72-81
  • êóô»éÐ×ì. (2013). 会ü¥ÙþØǪ˪ªª±ªë¡¸Ñûª³ªÈªÐ¡¹ªÈ¡¸Ò³ª³ªÈªÐ¡¹ªÎÝÂ×¾-«¸«§«ó«ÀーãÛܬ ÌËú¾ªÈ«¸«§«ó«Àー÷åì¶àõªòò¦øöªÈª·ªÆ-. ìíÜâåުȫ¸«§«ó«Àー, 13, 63-72.
  • 奥ï£亜Ú±. (2016). äÆÿ¡¼­ÀÇ ÀϺ»ÀÎ ¿©¼º Á¨´õÇ¥Çö »ç¿ë°æÇâ¿¡ °üÇÑ ¿¬±¸ –¹®¸»Ç¥ÇöÀ» Áß½ÉÀ¸·Î–. ÀϺ»¾î±³À°¿¬±¸, 139-156.
  • á³ô¹ðÄÛÝùê. (2004). ü¥ª·åëç¨ÑûÒ³ó¬-ïÒëù・ëòãÛ・実÷¾£®ìíÜâåުȫ¸«§«ó«Àー, 4, 25-39£®
  • Ú­ÐøýìÎÃ.£¨ 1997).¡¸ Ò³àõ専éÄû¡ãҪΪ¤ªÞ¡¹úÞÓÛìíÜâåÞ研ϼ会øº¡º Ò³àõªÎª³ªÈªÐ£­òÅíÞøº£­¡»ªÒªÄª¸ßöÛ®.
  • ñéÓö悦í­ (1999). Ò³àõªÎåëç¨・òÅíÞøº¡¡ªÒªÄª¸ßöÛ®.¡¡
  • ×ùÙ¥í­. (2005). «¸«§«ó«ÀーªËªèªëìíÜâåÞøúúުΫô«¡«ê«¨ー«·«ç«ó£­å´Ò´öµªÎéĪ¤ªë発ü¥ØÇ ªÎøúúÞû¡ãÒªÈëå声îÜ÷å徴£­. EAJS (European Association for Japanese Studies), 43.
  • â©ÜâÎÃÚ¸. (2005). «Æ«ì«Ó«É«é«ÞªËªªª±ªëÒ³àõåë稪ȫ¸«§«ó«À-«Õ«£«ë«¿ー. ìíÜâåÞ«¸«§«ó «Àー学会学会ò¼, 5, 23-46.
  • â©ÜâÎÃÚ¸. (2007). ñ«íåªÉªÎ強ª¤íÞØüªËªªª±ªëÒ³àõÙþØÇÞòÞÅéÄ-実ð·ªÎ会ü¥ªÈ«É«é«ÞªÈªÎÝïÎò -. 国ð·ÖåÙþð¯çé号, ÝÁÎúñ¶ã¼Ø¡ÓÞ学, 13-22.
  • â©ÜâÎÃÚ¸. (2008). «É«é«ÞªËÞŪïªìªëÒ³àõÙþØÇÞò-ÊÅÜâÊ«ªÎëòãÛðàÞÛªèªê. ìíÜâåުȫ¸«§«ó «Àー8, 73-94.
  • Hutchins, J. (2005). Current commercial machine translation systems and computer-based translation tools: system types and their uses. International Journal of Translation, 17(1-2), 5-38.
  • Toral, A., & Way, A. (2015) ¡®Machine-assisted Translation of Literary Text: A Case Study¡¯, Translation Spaces, 4, 241-268.
  • Toral, A., & Way, A. (2018) What level of quality can neural machine translation attain on literary text?. arXiv preprint arXiv, 1801, 04962.
  • Voigt, R., & Jurafsky, D. (2012). Towards a literary machine translation: The role of referential cohesion. In Proceedings of the NAACL-HLT 2012 Workshop on Computational Linguistics for Literature, 18-25.